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The vh'ial theorem for various not necessarily homogeneous potential functions V(r) is 
derived. I t  is proved in a transparent way that approximate wave functions at optimal scale 
satisfy the general virial theorem for any radial potential V(r). The proposed method for 
improving a variational wave function which by the scaling procedure obeys the virial theorem 
is tested in the case of some simple screened coulomb potentials. 

Das Vh'ialtheorem ffir verschiedene, nieht unbedingt homogene Potentialfunktionen 
V(r) wird abgeleitet. Es wird gezeigt, dab eine N/~herungsfunktion mit optimalem Skalen- 
parameter auch das allgemeine Virialtheorem ffir beliebige Radialpotentiale V(r) erfiillt. Die 
Methode der Streekung des Grundgebietes (sealing) client zur Verbesserung yon N/~herungs- 
funktionen, was am Beispiel einiger abgeschirmtcr Coulomb-Potentiale demonstriert wird. 

Le th6or~me du viriel pour quelques fonetions de potentiel V(r) non n6cessairement homo- 
g~nes est d~riv6 du th4or~me g6n6ral. I1 est prouv6 d'une mani~re intuitive que des fonetions 
d'onde approch6es, ~ l'6chelle optimum, satisfont le th6orbme du viriel g6n~ral pour tous tes 
potentiels radiaux V(r). La m6thode propos6e pour am61iorer une fonction d'onde variation- 
helle, qui ob6it au th6or~me du viriel, est essay6e dans le cas de quelques simples potentiels 
coulombiens 6erant6s. 

I. Introduction 

Foek 's  [l]  derivation of  the qua n t um  mechanical  virial theorem f rom the 
var iat ion principle depends upon  the homogenei ty  of  the potential  energy funct ion 
V(r) -,~ r n. The method  of  dimensions allows the expectat ion values of  the kinetic 
and potential  energy with respect to  scaled functions to be expressed by  functions 
of  the scale ~ = i : 

<T>, = U' <T> 

<v>, = ~-~ </>. (1) 

Here <>, denotes a mean value calculated from sealed functions ~ = ~aN/s ~ (~r), 
N is the number  of  electrons, and <> is the respective value for corresponding 
unsealed functions ~0(r). The minimizat ion of  the  tota l  energy E~ leads to  an 
opt imal  7o 

~+~  = ~ <v> (2) 
2 (T> 

which yields the  virial theorem, ff in fulfilment of  the variat ion principle, 70 is 
equal to  un i ty  for the exact  solution ~o. 

l~r impor tan t  is the  fact  t h a t  any  approximate  funct ion at  optimal scale 
also fulfils ~he virial theorem 
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or 

< T>~ = T < V>~ 

v~<T} = T v - -  <v> (3) 

which follows from inserting ~70 of Eq. (2) in Eq. (i). Because of the arbitrariness 
of the approximate trial function the function ~n a t  optimal scale may  still be far 
from the correct solution [2, 3]. However, ff the trial function is an exact solution 
of a similar system, it can be expected at optimal scale to be a good approximation 
also for a perturbed problem. In  this case by  optimal sealing an improvement  of 
the wave functions is obtained which then necessarily satisfy the virial theorem 
[4, 5]. 

This paper is not concerned with simple homogeneous potential  energy func- 
tions but  covers various non-coulombic potentials by  deriving their virial theorems 
and investigating approximate functions at  optimal scale for more complicated 
interactions for which the SchrSdinger equation is not solvable [6]. We are inter- 
ested in improving approximate wave functions by  sealing them so tha t  they 
satisfy the corresponding viriM theorem. The potentials investigated are applicable 
to interactions between electrons and nuclei but  also are used in the meson theory 
of nuclear forces. Therefore, these potentials may  act as screened potentials in the 
theory of atoms, molecules and of the solid state, while functions having a singu- 
larity may  describe also scattering potentials. A potential which is of our particular 
concern is the well known Debye-H/ickel or Yukawa potential e-~r/r. First we 
shall prove the s tatement  which is given in the subsequent headline. 

II. Scaled Wave Functions Satisfy the General u Theorem Ior Any 
Potential V (r) 

For a non homogeneous potential function Fock's  [1] procedure cannot be 
followed since for this case it is not possible to resolve the expectation values with 
respect to scaled functions in the way shown in Eq. (l). However, the generM 
viviM theorem is 

2<T> = - <W> (4) 

in which W is the Clausius virial of forces 

w = Z x~F~ (5) 
i 

~V 
~ = - ~ (6) 

where the summation runs over all coordinates of each particle. In  Eq. (4) the 
form of the potential function V is not specified. I f  we consider only the radiM 
par t  of the potential  V = V(r), which for the present purpose is no loss of generality, 
the virial theorem is more conveniently written as 

r dV > 2<T>=< ~ . (7) 
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I t  is now easy to show that  this equation holds also ff the integrals are calculated 
from approximate functions at optimal scale. The energy minimization for scaled 
functions 

E, = <T>, + <V>, = ~2<T> + <V>, (S) 

OEn = 2~ <T> -~ o <VN 0 (9) 

leads to the following condition 

0 <v>: (10) 2 ~ < T > = - ~  a~ " 

It is shown in the appendix that the right hand side can be rewritten 

(V>n dV 

so that  the minimum condition, Eq. (10), is identical with 

dV 
2~ <T> = <r ~-; >, (12) 

which actually is the virial theorem Eq. (7) for optimal scaled approximate func- 
tions. The relation which is the key to the proof of Eq. (11) is 

dV (OV) ~ (OV) (13) 

ff the substitution ~ = ~r is applied. 
The identity of Eq. (10) and (12) shows in a transparent way that  approximate 

wave functions at optimal scale satisfy the virial theorem for any radial- and not 
necessarily homogeneous potential function. 

By a proper choice of the hypervirial generator function which leads to the 
usual virial theorem it also can be shown without specifying the potential tha t  a 
variational wave function satisfies the virial theorem ff the necessary point trans- 
formation is a coordinate sealing [7, 8]. The connection of the energy minimization 
and the virial theorem for scMed functions is, however, not given in such a straight- 
forward way. 

III. The Virial Theorem for Various Potentials as Derived from Eq. (7) 

In this section some virial theorems of various potentials are derived which are 
of general physical interest. Since there is only a differentiation occurring in the 
general theorem Eq. (7) it is possible in principle to derive virial theorems for all 
differentiable potential functions. 

A )  The  Screened Potent ia l  V ( r )  = rne -~r"  (n ,  m,  ~ Real  N u m b e r s )  

Its first derivative is given by  

dV(r)  = n r n -  1 e_~r,~ _ or m r  n+m-1 e -~'r" 
dr 

= V(r) (nr -1 --  a m r  -1) 

which leads to the virial theorem 

2 <T> = ~ < V> - ~ m <r~ V>.  

(14) 

(15) 
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This potential function may  act as a scattering potential. In  its at t ract ive form it 
is the Yukawa potential (for n = - 1, m = 1) which also was used as screened 
potential in atomic, molecular and solid state theory [9]. Such a potential does not 
necessarily lead to a bound state. The critical value of n for the existence of a stable 
or unstable state lies about n = - 2 [i0, l i ] .  However, also the value of cr should 
influence the number of states substantially which can be filled into this potential 
well. 

B )  The  Generalized Slater Screened Potent ial  V (r )  = A / r  a ~- B / r  b 

This type of potential is a superposition of two homogeneous potentials 

V(r) = V a ( r ) +  Vb(r ) .  (16) 

Since the differentiation is a linear operator, the virial theorem is simply given 
from Eq. (l) and (7) by  the sum 

2 ( T )  --= - a ( V ~ )  - b ( V b ) .  ( t 7 )  

The potential B also is used as a scattering potential [12]. 

C)  The  Oscillating Potent ial  V ( r )  = r n ~in ( a t )  e -~r  
dV 

r Tr  = V[n T a r  ctg (at) - ~r] (iS) 

leads to the vlrial theorem 

2 ( T )  = n ( V )  q- a ( r V  ctg (at))  - r162 ( r V ) .  (19) 

Similarly the hyperbolic function 
V(r) = r n sinh (ar) (20) 

has the virial theorem 
2 ( T )  = n ( V )  A- a ( r  n+l cosh (at)) . (21) 

I t  is noticed tha t  all potentials considered lead to a vlrial theorem which is identicM 
with tha t  for homogeneous functions except for additional terms. Also, for aniso- 

l 
tropic potentials like V~ + y~ + cz 2 the virial theorem is formally identical with 

tha t  of the coulombie case 2 ( T )  = - (V) .  The series of virial theorems which are 
easily derived from Eq. (7) can be continued at length. However, most of them 
one may  construct will lack physical application. We shall rather  return to the 
screened coulomb potential of type A and investigate for certain examples the 
behavior of scaled approximate functions. 

IV. Scaled Wave Functions Serve as Approximations for Non-Solvable 
Schriidinger Potentials 

An approximate variational function satisfying the virial theorem is not 
necessarily close to the exact solution. As it was already mentioned in the intro- 
duction, we may  expect, however, a wave function which is an exact or a good 
solution for a neighboring problem to be also an acceptable solution for any per- 
turbed system. I f  we furthermore choose the function at  optimal scale the solution 
should be improved according to the variation principle. 

Let  us consider as an example ~ome screened atomic coulomb potentials which 
are not accurately solvable but  from where we know the exact solutions of a similar, 

25* 
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i.e. the coulomb problem. I n  the table the results are given for several potentials 
of  this type  with varying parameters.  The optimal scaling parameters  and the 
minimal energy values are calculated f rom a scaled hydrogen is funct ion F~ = 
2~8/~ e-~r This funct ion is considered to be an approximat ion for the ground states, 
which should be part icular ly good for screened potentials close to the coulomb 
case (a or C small). 

Table. Optimal scaling parameters and ground state energies ]or several 
Schr6dinger potentials calculated /tom a scaled ls  hydrogen ]unction 

potential parameter ~o Emi~ (V) a 
V(r) 

e - ~  a = 1.0 0.5000 0 -0.125 
r ~ = 0.5 0.8735 -0.1465 -0.5280 

a = 0i2 0.9757 -0.3268 -0.8028 
a = 0 t.0 -0.5 -1.0 

e -at a = t.0 0.5486 -0.t646 -0.3150 
r ~ a = 0.5 0.2743 -0.041t -0.0787 

a = 0.2 0.1097 -0.0066 -0.0126 

1 C C = 1.0 0.2000 -0.1000 -0.1200 
- r + ~  C = 0.5 0.3333 -0A667 -0.2222 

C = 0.2 0.5556 -0.2778 -0.4321 
C = 0.1 0.7143 -0.357t -0.6122 

a Expectation value of the potential energy; that of kinetic energy 
is given by �89 V0 ~. 

Concentrat ing our a t tent ion on the Yukawa  potential  we find already for 
small cr a substantial  increase in the tota l  energy as compared to the coulomb 
case. This is predominant ly  due to the change in potential  energy, the kinetic 
energy being almost  constant .  This behaviour  is quite different to t ha t  expected 
f rom the eoulombic virial theorem according to  which the change in potential  
energy caused by  the per turba t ion  is A (V} = - 2 A  (T} .  A similar result  is 
obtained for the screened Slater potential  - i / r  + C/r 2. I n  this case the change of  
kinetic energy is, however, larger t han  calculated f rom the coulombic formula. The 
assumption t h a t  an additional node plane e.g. when going f rom certain Slater 
functions to hydrogen-like functions, increases the kinetic orbital energy is no t  
necessarily t rue because the virial theorem for different potentials affects the 
kinetic par t  differently. The potentials considered represent real screening effects 
on the nuclear charge, because in either case the functions are expanded by  vir tue 
of  the scaling factor  ~ < l, which also gives rise to smaller Slater-Condon para-  
meters.  I n  the formulas derived in this paper  the i/rll operator  of  the potential  
funct ion was no t  taken  into account  explicitly. I t  formally can be considered bu t  
its inclusion, however, does no t  give rise to new aspects for the problems discussed 
here. This is equally t rue for an extension of  the present procedure to molecular 
systems. The other  potential  e-~r/r ~ which was included in the  table is no t  a screened 
coulomb potential.  The hydrogen  functions are therefore expected no t  to be good 
approximat ions  and the scaling parameter  does no t  approach the  coulomb limit 
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for small 0r Nothing can be said about the quality of this approximation since 
correct solutions are missing for such a type of interaction. 

V. Appendix 
Substituting O = ur the expectation value of the potential part  of energy calcu- 

lated from the scaled function is given by 
oo 

<V)n = ( ~(0) V(O/U) ~P(O) O ~ de. (22) 
0 

Let 

I.~(o) v(o/n) v(o) o * go = l~(o, n) 

without integration limits. Then we call the integrand of Eq. (22) 

~e/ ,  = h(0,V), 

its derivative with respect to ~ is 

We further define 

which is connected to (V},  by 

~(V>n 
&7 

on/~ = 13(0, V) 

1~(~, n) - I~(0, n ) -  

When commuting the differentiation we have 

From Eq. (i3) it is obtained 

0 - -  - - T  '0"  

Inserting this in Eq, (25) yields 

1 0 , 

Together with Eq. (28) the right hand side is after integration over 0 

or with the integration limits 

co 
/ ~TT~  

0 

which leads when comparing with Eq. (27) to the desired formula 
co 

0 

(23) 

(24) 

(25) 

(26) 

(27) 

(2s) 

(29) 

(30) 

(31) 
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af te r  r e subs t i tu t ion  of  ~ = ~r. Ef fec t ive ly  i t  is therefore  possible to exchange  the  
d i f ferent ia t ion to  ~ and  the  in teg ra t ion  over  ~ and  consider  the  i n t eg rand  as a 
funct ion  of  the  two independen t  var iables  ~ and  ~. 
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