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The virial theorem for various not necessarily homogeneous potential functions V(r) is
derived. It is proved in a transparent way that approximate wave functions at optimal scale
satisfy the general virial theorem for any radial potential V(r). The proposed method for
improving a variational wave function which by the scaling procedure obeys the virial theorem
is tested in the case of some simple screened coulomb potentials.

Das Virialtheorem fiir verschiedene, nicht unbedingt homogene Potentialfunktionen
V(r) wird abgeleitet. Es wird gezeigt, daB eine Naherungsfunktion mit optimalem Skalen-
parameter auch das allgemeine Virialtheorem fiir beliebige Radialpotentiale V(r) erfiillt. Die
Methode der Streckung des Grundgebietes (scaling) dient zur Verbesserung von Niherungs-
funktionen, was am Beispiel einiger abgeschirmter Coulomb-Potentiale demonstriert wird.

Le théoréme du viriel pour quelques fonetions de potentiel ¥(r) non nécessairement homo-
génes est dérivé du théoréme général. Il est prouvé d’'une maniére intuitive que des fonctions
d’onde approchées, & Iéchelle optimum, satisfont le théoréme du viriel général pour tous les
potentiels radiaux V(r). La méthode proposée pour améliorer une fonction d’onde variation-
nelle, qui obéit au théoréme du viriel, est essayée dans le cas de quelques simples potentiels
coulombiens écrantés.

1. Introduetion

Fock’s [1] derivation of the quantum mechanical virial theorem from the
variation principle depends upon the homogeneity of the potential energy function
V(r) ~ rn. The method of dimensions allows the expectation values of the kinetic
and potential energy with respect to scaled functions to be expressed by functions
of the scale = 1:

{Tq =1 <T)
Vog=1"LV> . (1)

Here (), denotes a mean value calculated from scaled functions g, = 73¥/2 ¢ (1),
N is the number of electrons, and () is the respective value for corresponding
unscaled functions g(r). The minimization of the total energy Z, leads to an
optimal 7,
wiz _ V)

which yields the virial theorem, if in fulfilment of the variation principle, 7, is
equal to unity for the exact solution ¢.

More important is the fact that any approximate function at optimal scale
also fulfils the virial theorem
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(Toq =5V

or
7T = 5 (V> (3)

which follows from inserting #, of Eq. (2) in Eq. (1). Because of the arbitrariness
of the approximate trial function the function ¢, at optimal scale may still be far
from the correct solution [2, 3]. However, if the trial function is an exact solution
of a similar system, it can be expected at optimal scale to be a good approximation
also for a perturbed problem. In this case by optimal scaling an improvement of
the wave functions is obtained which then necessarily satisfy the virial theorem
[4, 5].

This paper is not concerned with simple homogeneous potential energy func-
tions but covers various non-coulombic potentials by deriving their virial theorems
and investigating approximate functions at optimal scale for more complicated
interactions for which the Schrodinger equation is not solvable [6]. We are inter-
ested in improving approximate wave functions by scaling them so that they
satisfy the corresponding virial theorem. The potentials investigated are applicable
to interactions between electrons and nuclei but also are used in the meson theory
of nuclear forces. Therefore, these potentials may act as screened potentials in the
theory of atoms, molecules and of the solid state, while functions having a singu-
larity may describe also scattering potentials. A potential which is of our particular
concern is the well known Debye-Hiickel or Yukawa potential e—+/r. First we
shall prove the statement which is given in the subsequent headline.

II. Scaled Wave Functions Satisfy the General Virial Theorem for Any
Potential ¥V (r)

For a non homogeneous potential function Fock’s [1] procedure cannot be
followed since for this case it is not possible to resolve the expectation values with
respect to scaled functions in the way shown in Eq. (1). However, the general
virial theorem is

2Ty = — (W @)
in which W is the Clausius virial of forces
W = Z iy (5)
oV
Fy=— o ®)

where the summation runs over all coordinates of each particle. In Eqg. (4) the
form of the potential function ¥V is not specified. If we consider only the radial
part of the potential V = V(r), which for the present purpose isnoloss of generality,
the virial theorem is more conveniently written as

ATy =r il . @)
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It is now easy to show that this equation holds also if the integrals are calculated
from approximate functions at optimal scale. The energy minimization for scaled
functions

= <T>n + <V>11 = 2<T> + <V>11 (8)
ol 8 <V>,, _
= 2 KT+ =0 (9)
leads to the following condition
&V
2 =—
22Ty = et (10)
It is shown in the appendix that the right hand side can be rewritten
o (V>
—n Z =S (11)
so that the minimum condition, Eq. ( 10), is identical with
av
22T =(r W On (12)

which actually is the virial theorem Eq. (7) for optimal scaled approximate func-
tions. The relation which is the key to the proof of Eq. (11) is

av ov 72 (BV)
—— =Nl5) =——\% 1
dr n(@)n e \/e (13)

if the substitution ¢ = #r is applied.

The identity of Eq. (10) and (12) shows in a transparent way that approximate
wave functions at optimal scale satisfy the virial theorem for any radial- and not
necessarily homogeneous potential function.

By a proper choice of the hypervirial generator function which leads to the
usual virial theorem it also can be shown without specifying the potential that a
variational wave function satisfies the virial theorem if the necessary point trans-
formation is a coordinate scaling [7, 8]. The connection of the energy minimization
and the virial theorem for scaled funetions is, however, not given in such a straight-
forward way.

I1I. The Virial Theorem for Various Potentials as Derived from Eq. (7)

In this section some virial theorems of various potentials are derived which are
of general physical interest. Since there is only a differentiation occurring in the
general theorem Eq. (7) it is possible in principle to derive virial theorems for all
differentiable potential functions.

A) The Screened Potential V(r) = rre—+™ (n, m, x Real Numbers)
Its first derivative is given by

av(r)

7 = pyh—1 g—ot™ _  jprnim—1 g—ar™
r

= V(r) (mr—t — o mr-1) (14)
which leads to the virial theorem

2(TS = nlV> — am (rmV> . (15)
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This potential function may act as a scattering potential. In its attractive form it
is the Yukawa potential (for » = — 1, m = 1) which also was used as screened
potential in atomie, molecular and solid state theory [9]. Such a potential does not
necessarily lead to a bound state. The critical value of n for the existence of a stable
or unstable state lies about » = — 2 [10, 11]. However, also the value of « should
influence the number of states substantially which can be filled info this potential
well.
B) The Generalized Slater Screened Potential V(r) = Afre + Bjrd

This type of potential is a superposition of two homogeneous potentials
V(r) = Va(r) + Vi(r) . (16)
Since the differentiation is a linear operator, the virial theorem is simply given
from Eq. (1) and (7) by the sum
24T =—alVa) —b<Vo>. (17)
The potential B also is used as a scattering potential [12].

C) The Oscillating Potential V(r) = r® sin (ar) e—or

r %? = V[n + ar ctg (ar) — ar] (18)
leads to the virial theorem
2 =n{Vy 4+ alrV etg (ar)) — a {rV>. (19)
Similarly the hyperbolic function
V(r) = ¢ ginh (ar) (20)

has the virial theorem
2T =n<V) + a {rmt cosh (ar)> . 21)

It is noticed that all potentials considered lead to a virial theorem which is identical
with that for homogeneous functions except for additional terms. Also, for aniso-
tropic potentials like = gl the virial theorem is formally identical with
22+ y? +cz

that of the coulombic case 2 {T") = — (V. The series of virial theorems which are
easily derived from Eq. (7) can be continued at length. However, most of them
one may construct will lack physical application. We shall rather return to the
screened coulomb potential of type 4 and investigate for certain examples the
behavior of scaled approximate functions.

IV. Scaled Wave Funections Serve as Approximations for Non-Solvable
Schrodinger Potentials

An approximate variational function satisfying the virial theorem is not
necessarily close to the exact solution. As it was already mentioned in the intro-
duction, we may expect, however, a wave function which is an exact or a good
solution for a neighboring problem to be also an acceptable solution for any per-
turbed system. If we furthermore choose the function at optimal scale the solution
should be improved according to the variation principle.

Let us consider as an example some screened atomic coulomb potentials which
are not accurately solvable but from where we know the exact solutions of a similar,
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i.e. the coulomb problem. In the table the results are given for several potentials
of this type with varying parameters. The optimal scaling parameters and the
minimal energy values are calculated from a scaled hydrogen is function v, =
2¢’x e~ This function is considered to be an approximation for the ground states,
which should be particularly good for screened potentials close to the coulomb
case (« or C small).

Table. Optimal scaling parameters and ground state energies for several
Schrodinger potentials calculated from a scaled 1s hydrogen function

potential parameter 7, Emin (Ve
Vir)
emor a =1.0 0.5000 0 ~0.125
T o« =05 0.8735 —0.1465 —0.5280
o =02 0.9757 —-0.3268 —0.8028
a=0 1.0 -0.5 ~1.0
I «=1.0 0.5486 —0.1646 —-0.3150
T a =05 0.2743 —0.0411 —-0.0787
« =02 0.1097 —0.0066 -0.0126
1 C C=1.0 0.2000 —0.1000 —0.1200
“TTA  0=05 0.3333 ~0.1667 ~0.2222
C =02 0.5556 —0.27178 —0.4321
¢ =01 0.7143 —0.3571 —-0.6122

a Expectation value of the potential energy ; that of kinetic energy
is given by 1 n,2.

Concentrating our attention on the Yukawa potential we find already for
small x a substantial increase in the total energy as compared to the coulomb
case. This is predominantly due to the change in potential energy, the kinetic
energy being almost constant. This behaviour is quite different to that expected
from the coulombic virial theorem according to which the change in potential
energy caused by the perturbation is A (V) = — 24 (T). A similar result is
obtained for the screened Slater potential —1/r -+ C/r2. In this case the change of
kinetic energy is, however, larger than calculated from the coulombic formula. The
assumption that an additional node plane e.g. when going from certain Slater
functions to hydrogen-like functions, increases the kinetic orbital energy is not
necessarily true because the virial theorem for different potentials affects the
kinetic part differently. The potentials considered represent real screening effects
on the nuclear charge, because in either case the functions are expanded by virtue
of the scaling factor % < 1, which also gives rise to smaller Slater-Condon para-
meters. In the formulas derived in this paper the 1/ry operator of the potential
function was not taken into account explicitly. It formally can be considered but
its inclusion, however, does not give rise to new agpects for the problems discussed
here. This is equally true for an extension of the present procedure to molecular
systems. The other potential e—»f/r?which was included in the table is not a screened
coulomb potential. The hydrogen functions are therefore expected not to be good
approximations and the scaling parameter does not approach the coulomb limit
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for small x. Nothing can be said about the quality of this approximation since

correct solutions are missing for such a type of interaction.

Y. Appendix

Substituting p = nr the expectation value of the potential part of energy calcu-

lated from the scaled function is given by

Pon= [ vie) Vel wie) ¢ de .
0

Let
Jw(e) V(o/n) (o) * do = filo, n)

without integration limits. Then we call the integrand of Eq. (22)
3_f1> _
<a@ , = e,
its derivative with respect to # is

(%), = wio (24) oy =

on on
We further define
ohy
(9—17)@ = fle,m)
which is connected to <V, by
V)
—8—177,_ = faloo, n) — f3(0,7) -

When commuting the differentiation we have

ERCE
o /e g /n  oobm -
From Eq. (13) it is obtained
(), -~
o /o 1 \6g/n-
Inserting this in Eq. (25) yields

(B2), = - Tet@e(5) v

Together with Eq. (28) the right hand side is after integration over g

_ %jy)(g) 0 (%7)” (o) @ do = fal0, )

or with the integration limits

o
1 ov
~ = [v@e (%) vie et de = filen ) — 101
n 3 Q/n
which leads when comparing with Eq. (27) to the desired formula

8 (Vi
on

= ofi/}(e) e <%>n ple) @ de =<r % on
0

(22)

(23)

(24)

(25)

(26)

@7

(28)

(29)

(30)

(31)
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after resubstitution of p = #r. Effectively it is therefore possible to exchange the
differentiation to # and the integration over g and consider the integrand as a
function of the two independent variables 7 and p.
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